MATH SKILLS USED

Density

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$D = \frac{m}{V}$$

SAMPLE PROBLEM: What is the density of a billiard ball that has a volume of 100 cm³ and a mass of 250 g?

$$D = \frac{250 \text{ g}}{100 \text{ cm}^3}$$

$$D = 2.5 \text{ g/cm}^3$$

Densities of Substances

MATH IN SCIENCE: INTEGRATED SCIENCE

Substance	Density (g/cm³)
Gold	19.3
Mercury	13.5
Lead	11.4
Iron	7.87
Aluminum	2.7
Bone	1.7–2.0
Gasoline	0.66-0.69
Air (dry)	0.00119

Your Turn!

- 1. A loaf of bread has a volume of 2270 cm³ and a mass of 454 g. What is the density of the bread?
- **2.** A liter of water has a mass of 1000 g. What is the density of water? (Hint: $1 \text{ mL} = 1 \text{ cm}^3$)
- **3.** A block of wood has a density of 0.6 g/cm³ and a volume of 1.2 cm³. What is the mass of the block of wood? Be careful!
- **4.** Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

	Mass (g)	Volume (cm ³)	Density (g/cm³)	Substance
Example: 4725		350	$4725 \div 350 = 13.5$	mercury
a.	171	15		
b.	108	40		
c.	475	250		
d.	680	1000		

Decimals

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$D = \frac{m}{V}$$

SAMPLE PROBLEM: What is the density of a billiard ball that has a volume of 100 cm³ and a mass of 250 g?

$$D = \frac{250 \text{ g}}{100 \text{ cm}^3}$$

$$D = 2.5 \text{ g/cm}^3$$

Densities of Substances

► MATH IN SCIENCE: INTEGRATED SCIENCE

Substance	Density (g/cm³)	
Gold	19.3	
Mercury	13.5	
Lead	11.4	
Iron	7.87	
Aluminum	2.7	
Bone	1.7–2.0	
Gasoline	0.66–0.69	
Air (dry)	0.00119	

Your Turn!

1. A loaf of bread has a volume of 2270 cm³ and a mass of 454 g. What is the density of the bread?

$$454 \text{ g} \div 2270 \text{ cm}^3 = 0.2 \text{ g/cm}^3$$

2. A liter of water has a mass of 1000 g. What is the density of water? (Hint: $1 \text{ mL} = 1 \text{ cm}^3$)

$$1000 \text{ g} \div 1000 \text{ cm}^3 = 1 \text{ g/cm}^3$$

3. A block of wood has a density of 0.6 g/cm³ and a volume of 1.2 cm³. What is the mass of the block of wood? Be careful!

$$0.6 \text{ g/cm}^3 \times 1.2 \text{ cm}^3 = 0.72 \text{ g}$$

4. Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g) Example: 4725		Volume (cm ³)	Density (g/cm³)	Substance
		350	$4725 \div 350 = 13.5$	mercury
a.	171	15	171 ÷ 15 = 11.4	lead
b.	108	40	108 ÷ 40 = 2.7	aluminum
c.	475	250	475 ÷ 250 = 1.9	bone
d.	680	1000	680 ÷ 1000 = 0.68	gasoline